High-pressure – High-temperature Synthesis of Na₆MnO₄

Steffen Pfeiffer and Martin Jansen

Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany

Reprint requests to Prof. Dr. h. c. Martin Jansen. Fax: ++49-0711-6891502. E-mail: m.jansen@fkf.mpg.de

Z. Naturforsch. 2009, 64b, 487 – 490; received February 20, 2009

The title compound has been synthesized under 4 GPa and at 500 °C from Na₂O and MnO as starting materials. Rietveld refinement of the X-ray powder pattern indicates that Na₆MnO₄ is isostructural to Na₆ZnO₄ and thus is representing the second manifestation of an "isolated" [MnO₄]⁶⁻ anion after Na₁₄Mn₂O₉. The compound crystallizes in the hexagonal system in space group $P6_3mc$ (no. 186) with a = 7.6631(2) and c = 5.9013(2) Å, V = 300.1 Å³, and Z = 2.

Key words: Sodium Manganate(II), High-pressure – High-temperature Synthesis, Crystal Structure

Introduction

There are conspicuous parallels in the crystal chemistry of alkali oxomanganates(II) and oxozincates as well as oxocadmates. For example Na₁₀Mn₄O₉ [1] and Na₂Mn₂O₃ [2] are isostructural to Na₁₀Zn₄O₉ [3] and Na₂Zn₂O₃ [4], respectively, while Na₁₄Mn₂O₉ [5] and K₂Mn₂O₃ [6] are isostructural to the respective cadmates Na₁₄Cd₂O₉ [7] and K₂Cd₂O₃ [8]. Among the sodium zincates and the potassium cadmates, Na₆ZnO₄ and K₆CdO₄ are known to belong to the same structure type [9, 10]. As an obvious consequence one would expect the existence of the corresponding manganates, e. g. Na₆MnO₄. However, all attempts to prepare Na₆MnO₄ along the azide/nitrate route [11] failed. Instead, the known Compound Na₁₄Mn₂O₉ [5] was the main reaction product. A comparison of the densities of oxomanganates and oxozincates has revealed that Na₁₀Zn₄O₉ [3] has a density approximately 11 % higher than Na₁₀Mn₄O₉ [1]. By subtracting 11% of the density from Na₆ZnO₄ [9], a value results that is still slightly higher than the density of $Na_{14}Mn_2O_9$ ($\equiv Na_7MnO_{4.5}$). Therefore it appeared to us promising to try to synthesize Na₆MnO₄ at elevated pressures.

Experimental Section

Na₆MnO₄ was synthesized from a mixture of Na₂O and "active" MnO in a belt press at 4 GPa and 500 °C. Na₂O was prepared by reacting sodium azide (Sigma-Aldrich, 99.5 %) and sodium nitrate (Aldrich, 99 %) according to Eq. 1 [12],

$$5 \text{NaN}_3 + \text{NaNO}_3 = 3 \text{Na}_2 \text{O} + 8 \text{N}_2 (g),$$
 (1)

using specially designed containers [11], and a temperature schedule of: $25 \rightarrow 260$ °C (100 °C/h); $260 \rightarrow 380$ °C (5 °C/h); 380 °C (20 h) 380 \rightarrow 25 °C (100 °C/h). Active "MnO_x" was prepared by thermal decomposition of manganese carbonate (Chempur, 99.9%) at 400 °C for 12 h under vacuum (10^{-3} mbar) [13]. The starting materials were mixed in a glovebox in the molar ratio 3.1:1 and ground thoroughly in an agate mortar. The well homogenized starting materials were filled and compacted in a gold crucible (\varnothing : 4 mm), which afterwards was tightly closed by pressing the lid carefully into the crucible. The filled crucible was placed in a belt press, and a pressure of 4 GPa was applied. Heating followed the temperature schedule $25 \rightarrow 500$ °C (1 h), 500 °C (24 h), $500 \rightarrow 25$ °C (63 h). The reaction product was a red, microcrystalline powder, which is very sensitive to humid air. Thus, the product was handled at strictly inert conditions. For the X-ray measurement the sample was filled and sealed in a glass capillary and placed on a Stoe Stadi P diffractometer with $MoK_{\alpha 1}$ radiation ($\lambda = 0.7093$ Å). The powder pattern was indexed and refined based on the Na₆ZnO₄ structure type with a = 7.6631(2) and c = 5.9013(2) Å. Weak additional lines correspond to admixtures of 7 and 9 weight-% of Na₂O and NaMnO₂, respectively. Like for Na₆ZnO₄, the extinction conditions comply with the space group P63mc (no. 186). For the final Rietveld refinement the atomic positions of the zincate were used as a starting model. The experimental and calculated profiles are given in Fig. 1.

Results and Discussion

Na₆MnO₄ has been prepared as a micro-crystalline powder, *via* high-pressure – high-temperature synthesis. The red product is extremely sensitive to air and

0932-0776 / 09 / 0500-0487 \$ 06.00 © 2009 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

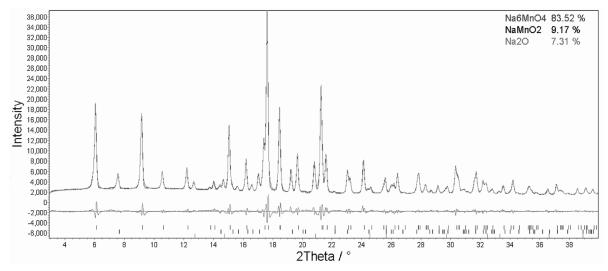


Fig. 1. Rietveld refimement of the X-ray powder pattern of Na₆MnO₄ and the difference curve showing the fit between the experimental and calculated data. The tickmarks below show the peak positions for Na₆MnO₄ (top), NaMnO₂ (middle) and Na₂O (bottom).

Table 1. Crystallographic data for Na₆MnO₄ [18].

Crystal data			
Crystal system	hexagonal		
Space group, Z	P6 ₃ mc (no. 186), 2		
Lattice constants (from powder data):			
a, Å	7.6631(2)		
c, Å	5.9013(2)		
Molar volume, cm ³ mol ⁻¹	150.06		
Molar mass, g mol ^{−1}	513.75		
X-Ray density, g cm ⁻³	2.84		
Data collection			
Diffractometer	STOE Stadi-P		
Monochromator	Ge (111)		
Radiation; λ, Å	MoK_{α} , 0.7093		
2θ range for data collection, deg	3 - 40		
Structure refinement			
Used program	TOPAS		
Crystallite size (Lorentz), nm	43		
Strain	0.06(1)		
R_{Bragg}	1.15		
$R_{\rm p}$	4.45		
R_{wp}	6.17		
Weight-% (Na ₆ MnO ₄)	83.5		
Weight-% (NaMnO ₂)	9.1		
Weight-% (Na ₂ O)	7.3		

moisture and turns black immediately when exposed to humid air. X-Ray powder diffraction patterns can be indexed and refined based on the hexagonal crystal system. Na₆MnO₄ is isostructural to Na₆ZnO₄. For the crystallographic data, atomic positions and displacement factors as well as interatomic distances, coordination numbers (CN), effective coordination numbers

Table 2. Atomic positions and thermal displacement parameters for Na₆MnO₄.

Atom	Position	х	у	Z	$B_{\rm iso}~({\rm pm}^2)$
Na ₁	6 <i>c</i>	0.1386(2)	-0.1386(2)	-0.0274(5)	1.14(5)
Na_2	6 <i>c</i>	0.5373(2)	-0.5373(2)	0.1462(6)	1.14(5)
Mn_1	2b	1/3	2/3	1/4	0.67(6)
O_1	2b	1/3	2/3	0.9048(2)	0.99(9)
O_2	6 <i>c</i>	0.8125(2)	-0.8125(2)	-0.1386(1)	0.99(9)

Table 3. Interatomic distances (in Å), coordination numbers (CN), effective coordination numbers (ECoN), and mean fictive ionic radii (MEFIR) for Na_6MnO_4 .

Atom	O ₁	O_2	CN	ECoN	MEFIR
Na ₁	2.589	2.334	4	3.77	0.98
	2.334				
	2.376				
Na ₂	2.286	2.487	6	4.4	1.05
	3.073	2.487			
		2.740			
		2.740			
Mn_1	2.037	2.049	4	4.0	0.65
		2.049			
		2.049			
CN	7	8			
ECoN	6.2	7.3			
MEFIR	1.38	1.42			

(ECoN), and mean fictive ionic radii (MEFIR) [14] see Tables 1 – 3.

The main features of the structure are isolated MnO₄ tetrahedra (see Fig. 2) with one of their threefold symmetry axes aligned parallel to [001]. The tetrahedra are arranged following the motif of a hexagonal

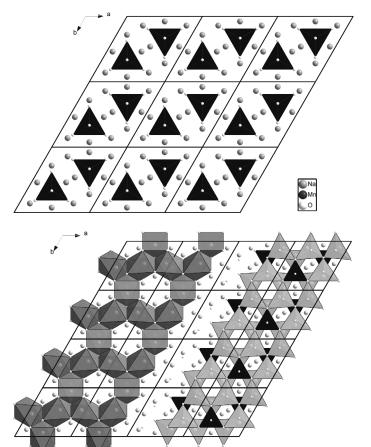


Fig. 2. Projection of the crystal structure of Na_6MnO_4 along [001].

close packing with the stacking sequence A, B, A, B, A... along [001]. Thus, Na₆MnO₄ is the second compound besides Na₁₄Mn₂O₉ [5] containing "isolated" [MnO₄]⁶⁻ anions. There are two crystallographically independent oxygen positions, O₁ representing the apical position of the tetrahedron, and O2 forming the base of the tetrahedron. The bond lengths Mn–O₁ and Mn- O_2 are 2.037 and 2.049 Å, respectively, the angles are in the range between 109.40 and 109.54°, indicating that the tetrahedra are rather regular. The bond lengths are in good agreement with the distances in other manganates(II), like for example Na₂MnO₂ [15] and Na₁₀Mn₄O₉ [1], but some of the O-Mn-O angles in these latter compounds deviate strongly from the ideal value of 109.4°. Like the tetrapnictidotitanates $Na_3M_3[TiX_4]$ with M = Na/Sr, Na/Eu and X =

Fig. 3. Projection of the crystal structure of Na_6MnO_4 along [001]. On the left hand side the Na_2O_6 octahedra are emphasized, on the right hand side the Na1O4 (light grey) and the MnO_4 tetrahedra (black) are depicted.

P, As [16], the structure can be described in terms of a hexagonal close packing of oxygen atoms with 3/4 of the octahedral voids being filled with sodium atoms, 3/8 of the tetrahedral voids being filled with sodium and 1/8 with manganese atoms according to: $(Na_3^0)(Na_3^{t-}Mn^{t+})O_4$, with t+ and t- indicating the orientation of the tetrahedra parallel or antiparallel to the c axis (see Fig. 3). Na_6MnO_4 is one more example of the amazingly extensive family of solids of this structure type, which comprises ternary oxides and sulfides, or, as anti-types oxide halides like Ba_4OCl_6 [17].

Acknowledgement

We thank Dr. P. Balog and F. Falkenberg for their help in carrying out the high-pressure – high-temperature experiments.

- [1] P. Amann, B. M. Sobotka, O. Fastje, A. Möller, Z. Anorg. Allg. Chem. **2007**, 633, 2579 2586.
- [2] S. Pfeiffer, M. Jansen, Z. Kristallogr. NCS 2009, 224, 163 – 164.
- [3] D. Trinschek, M. Jansen, Z. Anorg. Allg. Chem. 1996, 622, 245 – 250.
- [4] D. Trinschek, M. Jansen, Z. Naturforsch. **1996**, 51 b, 917–921.
- [5] G. Brachtel, R. Hoppe, Z. Anorg. Allg. Chem. 1978, 438, 97 – 104.
- [6] E. Seipp, R. Hoppe, Z. Anorg. Allg. Chem. 1985, 530, 117-126.
- [7] G. Brachtel, R. Hoppe, Z. Anorg. Allg. Chem. 1978, 441, 83–85.
- [8] E. Vielhaber, R. Hoppe, Z. Anorg. Allg. Chem. 1971, 382, 270 – 280.
- [9] P. Kastner, R. Hoppe, Z. Anorg. Allg. Chem. 1974, 409, 69-76.
- [10] R. Baier, E. Seipp, R. Hoppe, Monatsh. Chem. 1987, 118, 677 – 690.

- [11] D. Trinschek, M. Jansen, Angew. Chem. 1999, 111, 234-235; Angew. Chem. Int. Ed. 1999, 38, 133-135.
- [12] E. Zintl, H. H. von Baumbach, Z. Anorg. Allg. Chem. 1931, 198, 88 – 101.
- [13] M. Le Blanc, G. Wehner, Z. Physik. Chem. A 1934, 168, 59-78.
- [14] R. Hoppe, Z. Kristallogr. 1979, 150, 23-52.
- [15] S. Pfeiffer, M. Jansen, Z. Anorg. Allg. Chem. 2009, 635, 211 – 215.
- [16] J. Nuss, W. Hoenle, H.G. von Schnering, Z. Anorg. Allg. Chem. 1997, 623, 1763 – 1768.
- [17] B. Frit, B. Holmberg, J. Galy, *Acta Crystallogr.* **1970**, *B26*, 16–19.
- [18] Further details of the crystal structure investigation may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; e-mail: crysdata@fiz-karls ruhe.de, http://www.fiz-informationsdienste.de/en/DB/ icsd/depot_anforderung.html) on quoting the deposition number CSD-420410.